
Let us again clean it up, because we will have to revisit this figure many times. So, again I am

cleaning it up. So, next is what? Now what now actually next stage is till now we have seen,

that the output of this 𝑃𝐶 = 𝑃𝐶 + 1 is memory is in register 𝐼𝑅 and memory has you have given

the command to read the memory. In second stage what we do? so whatever I told you about

the first one is written over here, you can read it now what is it says 𝑍𝑜𝑢𝑡 𝑃𝐶𝑖𝑛. So now, what

this 𝐼𝑅 has, if you look at the initial last slide then 𝐼𝑅 had the value of 𝑃𝐶 = 𝑃𝐶 + 1, but at that

time it was 𝑍𝑖𝑛.

Now, I am making as 𝑍𝑜𝑢𝑡 and 𝑃𝐶𝑖𝑛; that means, the value of 𝐼𝑅 will go to 𝑃𝐶 program counter,

via the bus because 𝑍𝑜𝑢𝑡 and 𝑃𝐶𝑖𝑛 and we are waiting for 𝑊𝐹𝑀𝐶 so are waiting till the memory

says that, I am ready and whatever you asked in the first stage it has been dumped to the

memory buffer register in fact, again revisiting. So, in this stage what I am doing? You are

making 𝑍𝑜𝑢𝑡. So, the value of 𝐼𝑅 is over.

(Refer Slide Time: 26:04)

So, this is 𝑍𝑜𝑢𝑡 and 𝑃𝐶 is now becoming 𝑃𝐶𝑖𝑛. So, the incremented value of 𝑃𝐶 is going to this

1 by this path. So, 𝑃𝐶 = 𝑃𝐶 + 1 or the constant, is loaded into the 𝑃𝐶 and also I am waiting for

𝑊𝐹𝑀𝐶; that means, if the signal is one; that means, what the value of the memory location,

where the instruction was there is loaded into the memory data register or the memory buffer

register, and now you can read the instruction to the instruction register.

558

So, in the second stage 𝑃𝐶𝑖𝑛, this data will be read from this memory this 𝐼𝑅, which actually

nothing but 𝑃𝐶 = 𝑃𝐶 + 1 and it will be read to the 𝑃𝐶 by this bus. So, the 2 signal 𝑍𝑜𝑢𝑡 and 𝑃𝐶𝑖𝑛

accomplishes that and we are waiting till basically, our memory is ready. So, that is over here.

(Refer Slide Time: 26:56)

After that what happens? Now the memory is ready, now what you have to do you have to load

it into load it, load the value of this instruction into the instruction register, very simple you

will make memory data register out and register in as simple as that just have a very quick look.

So now, your instruction is over here, you have to load it to the instruction register.

(Refer Slide Time: 27:18)

559

What will you do very simple 𝑀𝐷𝑅𝑜𝑢𝑡 and 𝐼𝑅𝑖𝑛 it will serve the purpose basically, what is

being done in the 4th instruction, 4th step these are the 2 control signals which is generated in

the 4th stage, this one then again what?

Now, what is you instruction, that is 1, 2 and 3 will be same for all instructions, you know that

is instruction fetch. Now instruction has been fetched, it is in the instruction register now you

have to tell what I have to do. So, what was the instruction the instruction was basically, load

𝑅1, 𝑀 that is whatever is present in the memory location that is 𝐿𝑂𝐴𝐷 𝑅1, 𝑀; that means, in

memory location 𝑀 whatever value is, there data is there you have to load it into 𝑅1.

So now, what? So, you have to take this value 𝑀 and loaded it into the memory address register,

because that part is going to tell where the operand exists so obviously, first instruction will be

𝐼𝑅𝑜𝑢𝑡 because the value of the instruction, which is present in the instruction register has to be

given into the bus, and then your memory address register basically, we read the value from 𝑀,

now what there is some subtle thing over here, we are not and memory has to be in read mode

of course, but there is slight thing which we have skipped over here, that is the whole instruction

register will have load then 𝑅1 and 𝑀.

We need to load only this part of the instruction 𝐼𝑅 to the memory address register because, we

don’t require the opcode we don’t require the address for 𝑅1. In fact, the instruction decoder

will take care of that. So, that part we have slightly obstructed, because we just required to keep

this part, which is a very simple digital operation but only this part has to be loaded into the

memory address register. So, we will do that and then, again wait till your memory read

operation is complete. So, you can see the 𝑅1 has the entire instruction opcode 𝑅1 address and

address for 𝑀, that is the 3 parts basically as I have told you, but in fact, you are going to only

use this part, to be loaded into the instruction memory address register. So, that clipping part

we have dropped over here.

Then at 5th stage, we wait till the memory says that, I am done with it. So, once the memory

says that I am done with it; that means, the data this 𝑀 data is now loaded in to the memory

data register. So now, what you will have to do you have to just dump the memory data register

value that is 𝑀𝐷𝑅𝑖𝑛to 𝑅𝑖𝑛 that is 𝑅1. So, 𝑀𝐷𝑅𝑜𝑢𝑡 means whatever data is available in the

memory data register, it will out and it will be present in 𝑅1. So, in 6 stages I complete the

instruction, let us quickly look at the three controls in this figure again. So now, what happened

560

the instruction decoder via instruction register will load the value of 𝑀. So, this one will go to

the memory data register.

(Refer Slide Time: 29:55)

So, of course, it is 𝐼𝑅𝑜𝑢𝑡 with slight abuse of notation, which I am not going to take the entire

𝐼𝑅 only the 𝑀 part of 𝐼𝑅 and 𝑀𝐷𝑅𝑖𝑛 and memory is in READ mode, wait for some amount of

time that is stage 5 and then once it is done, the data has come sorry the just a small mistake

the 𝑀 part of this one, has gone to the memory address register not the data register that is

𝐿𝑂𝐴𝐷 𝑅1, 𝑀.

(Refer Slide Time: 30:19)

561

So, this 𝑀 part actually goes to memory address register via the instruction register. So, 𝐼𝑅𝑜𝑢𝑡

and 𝑀𝐴𝑅𝑖𝑛 you wait for some time, which is signal number stage number 5 after that the value

has come over memory data register, now it has go to it has go to register 𝑅1. So, as simple as

that now we are going to make an 𝑀𝐷𝑅𝑜𝑢𝑡 of course, all these things are now have become 0

that all these things has to go off. So, 𝑀𝐷𝑅𝑜𝑢𝑡 will be 1 and also 𝑅𝑖𝑛, R1in has to be 1.

(Refer Slide Time: 30:53)

So, in fact this one will go from here to here. So, it is done. So, all the stages are complete. So,

last 3 stage basically reads the value of 𝑀 from the instruction register, writes into the memory

address register, waits till the value of 𝑀 is dumped to the memory data register and then the

value 𝑀𝐷𝑅𝑜𝑢𝑡, will take the value from 𝑀𝐷𝑅 and it will load to 𝑅1. So, your job is done. So,

in 6 micro instructions and the corresponding control signals, what we have done we have

shown how a complete instruction is fetched, decoded and executed. So, this was about the

instruction 𝐿𝑂𝐴𝐷 𝑅1, 𝑀.

562

(Refer Slide Time: 31:29)

As I told you, we will look at different instruction. So, that was just a load instruction. So, in

this case, we are going to see another arithmetic operation. So, in this case we are saying

𝐴𝐷𝐷 𝑅1, 𝑅2; in this case the value of 𝑅1 will be added to 𝑅2 and stored in 𝑅2. Again as I told

you in the first stage 𝑃𝐶𝑜𝑢𝑡, 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑖𝑛, 𝑅𝑒𝑎𝑑, 𝑠𝑒𝑙𝑒𝑐𝑡, 𝐴𝑑𝑑 𝑎𝑛𝑑 𝑍𝑖𝑛 this

stage.

(Refer Slide Time: 31:50)

Program counter incremented stored in 𝐼𝑅, move to 𝑃𝐶 and wait for 𝑊𝐹𝑀𝐶, once it is done

then 𝑀𝐷𝑅𝑜𝑢𝑡 and put in 𝐼𝑅 that is first stage points to the memory location, where the data is

563

to address is where the instruction is stored, plan to increment the program counter, really

increment the program counter by ALU, dump it in 𝑃𝐶 and wait for some amount of time, once

it is done take the instruction from instruction register sorry take the instruction from MDR and

put it in.

So, these three stages basically correspond to any instruction fetch, whether it is add 𝑅1 𝑅2,

whether it is load 𝑅1, M1 the first 3 stage, basically this one this one and this one will remain

constant for everything. Now, from here based on the addressing mode and the instruction type

things will start becoming changed. So, this one is all correspond to fetch. So, no changes over

here correspond to compared to the previous case. So now, in this what I am having. So, next

instruction is add 𝑅1 and 𝑅2. So, it was add 𝑅1 and 𝑅2. So now, what is going to happen?

So, how I will do it? Basically there is one operand in 𝑅2, one operand in 𝑅1, both has to be

added and the value has to stored in 𝑅1 so. In fact, here there is no question of accessing the

memory again. So, unlike the previous case here we will not take any we will not take the

instruction from 𝐼𝑅 and put it into the memory address register and again read the memory not

required, because everything is in the registers.

So, basically what is does, it says that 𝑅2𝑜𝑢𝑡 and put it in 𝑌𝑖𝑛. So, what it is doing taking the

value of 𝑅2 and putting it in the 𝑌, 𝑌 let us quickly look at the figure again.

(Refer Slide Time: 33:39)

564

So, what it is doing it is taking the value of 𝑅2 some 𝑅2 which is connected over here some

register. So, that it is dumping it to 𝑌. So, this value I am putting it over here, now how what

will happen basically. So, what I will do that 𝑅2 value I will first store it into 𝑌, then what I

will do then I will take the value of 𝑅1, which is again another register over here and I will

connect it to here. So, first I will what I will do, the value of 𝑅2 I will store it in 𝑌 for a

temporary, then instruction 𝑌 will have the value of 𝑅2.

Then next is what I am going to do, next is I am going to just connect it to 𝑅1. So, that is goes

to the ALU directly, and in the mux select will be equal to 1 so, basically sorry. So, select will

be equal to 1, if 𝑠𝑒𝑙𝑒𝑐𝑡 = 1 then 𝑅1 will be directly fetched to the ALU to this part and 𝑌 which,

is nothing but in your case in your case 𝑅2 will be coming to the ALU and; obviously, in add

mode.

So, here you will have the value of 𝑅1 + 𝑅2. So, that is how I will do, I will store the value of

𝑅2 to 𝑌 first then next stage I will directly connect 𝑅1 to ALU by the bus, as simple as that

select will be 1. So, I will have the value 𝑅2 to 𝑅1 which I have to store in a very temporary

manner to register 𝐼𝑅 and then again, I will dump the value of 𝐼𝑅 to register 𝑅1. So, this will

be the stage it will go through this is over all idea, now we will individually take the steps and

clear 1 at a time, now let us again go step by step.

 (Refer Slide Time: 35:10)

So, next is 𝑅2 𝑌𝑖𝑛. So, already we have told 𝑅2 means the value of register 2, is dumped in 𝑌

in. Next one next already your 𝑌 that is your if you look at it this is your ALU and this is your

565

register 𝑌 and it is coming here, by a multiplexer this is your mux and this in fact, is your mux.

So, next stage what I have done I have said 𝑅1 out. So, 𝑅1 was somewhat connected over here.

So, I am making 𝑅1𝑜𝑢𝑡. So, the value of 𝑅1 is going in that direction already we have discussed,

but again I am just redrawing.

So, value of 𝑅1 is going over here, which is our next operand which is connected to the ALU

and now 𝑌 which is having the value of 𝑅2, previously it is actually temporarily holding the

value of 𝑅2, now this one you have mux you have made it one. So, it is being fed over here. So

now, it is your doing 𝑅1 + 𝑅2 that you are going to add now, where I am going store as you

already seen that we have 𝑍𝑖𝑛. So, 𝑍𝑖𝑛 will actually temporarily store the value of 𝑅1 + 𝑅2.

Now, what next stage the 𝐼𝑅 is also connected over here in this 6th stage you will make 𝑍𝑜𝑢𝑡

the value of 𝑍𝑜𝑢𝑡 will come over here and now 𝑅1 will be 𝑅1 in. So now, this will no longer be

in this mode it will be going in 6th stage that is will be going in the reverse mode. So, it will

be 𝑅𝑖𝑛 and it will be 𝑍𝑜𝑢𝑡.

So, value of 𝑅1 and 𝑅2 via 𝐼𝑅 will go to 𝑅𝑖𝑛 and your job is done. So, in the 6th stage 𝐼𝑅 will

be out and 𝑅1 will be taking in. And so, these are the 6 signals, which I have taken here add 𝑅1

and 𝑅2, if you compare load from a memory location and load from 𝑅1 and 𝑅2, this is a register

mode instruction and that involved a memory mode. So, there was a memory.

So, in the second stage also you have to load the memory, you have to in first stage you fetch

the instruction from the memory in the second stage actually you have get you have get the

operand from memory location 𝑀, but in this case what happened we have never gone to

memory for the second time, because everything was available in the registers right?

566

(Refer Slide Time: 37:02)

So now let us quickly have a look at, what are the different register values while we are

executing this instruction. So, first instruction like as I told you, the first 3 instructions that is

𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑜𝑢𝑡, 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖𝑛, 𝑅𝑒𝑎𝑑, 𝑠𝑒𝑙𝑒𝑐𝑡 0, 𝐴𝑑𝑑 𝑎𝑛𝑑 𝑍𝑖𝑛 then again the value of 𝑍𝑜𝑢𝑡

is going to the program counter, wait for some time and the memory data register is going to

the register in; that means, first one corresponds to reading the instruction from the memory,

as well as setting to increment the program counter.

This one actually increment the program counter and 3rd one actually reads the value of the

instruction from the memory to the instruction register, this corresponds to instruction fetch

they are same for everything, let us see step 1 2 3 what are the values of the registers?

So, let us assume that the program counter has the value of 𝑋, 𝑋 will be 1 2 3 4 depending on

which position of the program you are in so. In fact, what happens. So, program counter I am

assuming the value of 𝑋. So, you are dumping the value of program counter to memory address

register. So, what is going to happen? So, if the value of program counter is 𝑋, the memory

address will also have the memory address register will also have the value of 𝑋 memory is in

READ mode, select mode, nothing to do and you are in ADD mode. So, what is going to

happen?

If you look at the architecture this was you main bus, 𝑃𝐶 you are dumping over here, which

was which has the value of 𝑋 and this is your ALU. So, 𝑋 is going over here and you are making

it ADD mode, correct is it an add mode and you are saying that this select is equal to 0, select

567

is equal to 0 means, you are going to add a constant. So, it will be constant plus 𝑋. So, in this

case we have said that and the output is also to 𝑍𝑖𝑛.

If it is 𝑍𝑖𝑛 so, 𝑍1 will be written by the value of the output of the arithmetic logic unit. So, in

this case we are assuming the constant to be equal to 1. So, you are going to get 𝐼𝑅 = 𝑋 + 1,

that is 𝑃𝐶 is incremented by one and we are assuming that, register 𝑅1 and 𝑅2 are having the

value of 𝑋1 and 𝑋2, which will be 5 6 7 10 11 14 whatever which one we are going to add. So,

after the first stage you can see the value of program counter, which was 𝑋 is incremented and

memory address register, has the value 𝑋 that means, now in the next stage basically, the

program the memory location 𝑋 will have the instruction will be loaded to the instruction

register.

Now next what happens next stage you can see 𝑍𝑜𝑢𝑡 𝑃𝐶𝑖𝑛; that means, the value of 𝐼𝑅 will be

now out, and it will actually write the program counter in a reverse manner. So, of course, the

value of 𝐼𝑅 will be written to the program counter 𝑃𝐶 = 𝑃𝐶 + 1 and also, we are waiting for

𝑊𝐹𝑀𝐶 that is you have to wait until the memory saturated, saying that the data has been

peacefully read from the memory to the memory data register. So, the instructions 𝐴𝐷𝐷 𝑅1, 𝑅2

was available in the memory. So, if you look at the memory. So, here the instruction was there,

that is 𝐴𝐷𝐷 𝑅1 𝑅2 and this was actually memory location 𝑀.

So now it has come over here, that is in the second stage and finally, in the third stage basically

where you are saying 𝑀𝐷𝑅𝑜𝑢𝑡 register in; that means, memory data register value will actually

equal to the instruction register; that means, now what we have done in 3 stages this memory

location 𝑀 basically. In fact, it should not be 𝑀 basically it is 𝑋 I am sorry, memory location 𝑋

we are making it 𝑋 this memory location 𝑋 which is having the instruction, add 𝑅1 𝑅2 is being

fetched memory location 𝑋 and it is dumped to the instruction register. So, instruction has been

fetched now we are looking to the next slide.

568

(Refer Slide Time: 40:42)

Now, you are going to go to the ADD. So, this was the stage so, next what you are doing? You

are saying that 𝑅𝑜𝑢𝑡 = 𝑌 in already we have seen that, this is your ALU and this in your 𝑅2,

𝑅2 should be fetched to 𝑌 means a temporary register over here. So, I have here the mux will

be set in such a manner this is 𝑌. So, that it will not take a constant it will take the value of 𝑅2

as a operand. So, in this second stage you are saying that 𝑅2 = 𝑌 in. So, 𝑅2 basically had the

value of 𝑋, which will be dumped to memory location 𝑌 I am sorry register 𝑌. So, you can see

this has been dumped over here.

So now, this is actually having the value of 𝑋2, this is 𝑌 and another if you remember, this part

of the ALU directly is connected to your bus. So, in the second stage the value of 𝑅2 is now

dumped into 𝑌, which is nothing but 𝑋2 is 1 operand of the ALU, which is read. Second stage

what you are doing here, that is 5th stage in this case, you are saying 𝑅1 out select 1 ADD and

𝑍𝑖𝑛. So, you are saying 𝑅2 out. So, if you are saying 𝑅2 out means what sorry 𝑅1 out; that

means what? This is 𝑅1 which is now feeding the bus.

So, it is having the value of 𝑅1, 𝑅1 is nothing but your 𝑋1 over here. So, 𝑅1 is having the value

of 𝑋1. So, 𝑋1 is going 𝑋1 is coming to the ALU, as the 2nd operand. So, this is your 𝑋2 sorry

𝑅1 sorry this is 𝑋1. So, 𝑋1 is coming over here, correct and ALU already having the data in

the other operand 𝑋2. So, output will be 𝑋2 + 𝑋1, right? There is 𝑅1 and you are making select

equal to 1, once select is made to be 1, the multiplexer will take the value of 𝑌 that is 𝑋2 to the

ALU constant will not be added, ADD is the symbol that is going to be add it. So, that is added

569

now and the output that is 𝑋1 and 𝑋2 will be dump to 𝑍𝑖𝑛 because, where it is connected to a

register which is 𝐼𝑅. So, it will come over here.

So, you can see 𝑃𝐶 has been incremented. So, it is continued from here to here, memory address

register is 𝑋 there was no change 𝐼𝑅 is having the value of 𝑋1 + 𝑋2, 𝑌 is temporarily holding

the value of 𝑋2 which is continued over here, and the 𝑅1 the register 𝑅1 that is again having

the value of 𝑋1 is feeding the ALU directly from the bus, without any primary without any

temporary register last stage what we do, we say 𝑍𝑜𝑢𝑡 = 𝑅1 that is, now the value of 𝐼𝑅 has to

be the value of 𝐼𝑅 has to be fed to register 𝑅1.

So, what you will do you will say, 𝑍𝑜𝑢𝑡 and 𝑅𝑖𝑛. So, in this case the 𝑅1 which was initially

having the value of 1, is update with the value of 𝑋1 and 𝑋2. So, that is this value actually

changes and your job is done basically. So, again you can very quick look at this figure. So, I

am cleaning it up then it is very simple you can understand the illustration ok.

(Refer Slide Time: 43:26)

So, with this we come to the end of this unit and before we quit, basically we always have some

template questions and we see how the objectives have been achieved. So, the first question

here is, draw the diagram of a CPU with single bus, in that design you need to explain each

component, write down the control steps of fetching an instruction briefly explain the action in

terms of control signal in each step.

570

So, basically if you are taking a single bus, if you are taking a multiple bus, basically the first

3 stages in case of single bus corresponds to fetch and that is constant. So, if you are able to

explain this as you have already done in the first few slides, you can actually explain the

generation of control signals, that is driven by the internal organization of a processor, mainly

in case of single bus architecture. Also, you will be able to design the complete steps, required

for a fetch phase of the instruction then, we are saying again take the same bus of this

architecture and take the instruction load one 𝑅1 and 𝑅2 load 𝑅2 to 𝑅1, whatever value is

available in 𝑅2 it will be going to 𝑅1. So, generate all the control signals and all this steps for

this.

In fact, just we have seen one instruction for add 𝑅1 and 𝑅2 if you repeat it for load, load

instruction load again if you are; obviously, able to design this, you can easily explain the

generation of control signals for any kind of bus, here we are asking for single bus you can try

for 2 bus or 3 bus architecture slightly complicated, but you will be able to do this, because

more number of buses means less number of steps, which will again look at look in another

future unit on this module, will be looking as 3 bus architecture and then we will be analyzing,

but mainly here we are just going for single bus. You can just have a thought that, if you are

having multiple bus, then together in one bus you can move the value of 𝑅1 to 𝑅2 one bus, you

can use for loading the 𝑃𝐶 to the memory address register and so, forth.

So, it will be bit faster basically, but in if you are able to design all the steps for this load 𝑅1

and 𝑅2 then, you can explain the single bus organization, as well as you can say exact steps

required to fetch decode and execute instructions. So, with this we come to the end of this unit

and next unit we will be going into more depth of some slightly more complicated instructions,

like jump and conditional instructions and how we are generating control signals for that.

Thank you.

571

